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Accelerator processors like the new Cell processor are extending the traditional platforms for scientific
computation, allowing orders of magnitude more floating-point operations per second �flops� compared to
standard central processing units. However, they currently lack double-precision support and support for some
IEEE 754 capabilities. In this work, we develop a lattice-Boltzmann �LB� code to run on the Cell processor and
test the accuracy of this lattice method on this platform. We run tests for different flow topologies, boundary
conditions, and Reynolds numbers in the range Re=6–350. In one case, simulation results show a reduced
mass and momentum conservation compared to an equivalent double-precision LB implementation. All other
cases demonstrate the utility of the Cell processor for fluid dynamics simulations. Benchmarks on two Cell-
based platforms are performed, the Sony Playstation3 and the QS20/QS21 IBM blade, obtaining a speed-up
factor of 7 and 21, respectively, compared to the original PC version of the code, and a conservative sustained
performance of 28 gigaflops per single Cell processor. Our results suggest that choice of IEEE 754 rounding
mode is possibly as important as double-precision support for this specific scientific application.
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I. INTRODUCTION

Lattice-Boltzmann �LB� modeling schemes �1,2� have
emerged in the last several years as powerful methods for
gaining scientific insights on a variety of complex systems.
Different phenomena such as microfluidics �3�, spinodal de-
composition �4�, rheology of amphiphilic mixtures �5�, col-
loidal suspensions �6�, and flow in porous media �7� have
been profitably investigated using the LB algorithm. In fact,
the discrete character of the model can be an advantage over
continuum fluid dynamics models when studying interfacial
phenomena, e.g., bubble pinching �8�. The LB method has
also been used in multiscale models coupling molecular dy-
namics �MD� and hydrodynamics to study coarse-grained
biomolecular systems, where the solvent dynamics is solved
on a lattice �6,9–11�, while the coarse-grained macromol-
ecule dynamics is solved by molecular dynamics. While this
approach permits a speed-up by two orders of magnitude for
the calculation of the solvent dynamics compared to MD, it
remains insufficient to study big macromolecular systems
due to the computational cost of the LB domain.

Improving the performance of the LB method is therefore
crucial to expand the scientific insight afforded by simula-
tions. Hitherto, performance increase has usually come from
faster versions of standard processors. However, already heat
dissipation problems and memory access limitations make it
very difficult to deliver the same performance gain as during
the last decade. A major shift in processor design has there-
fore begun as a response to these problems, and recent pro-

cessors are rapidly changing toward multicore architectures.
For high-performance computing, however, more innovative
solutions, which can be referred to as many-core architec-
tures, have been recently implemented. The Cell processor
�12�, designed and developed jointly by Sony-Toshiba-IBM,
is a heterogeneous multicore processor, containing eight spe-
cialized vector cores known as synergistic processing ele-
ments �SPEs� controlled by a general purpose PowerPC core.
Similarly, modern graphics processing units �GPUs� have a
multicore, highly multithreaded architecture and may be
used for general purpose computation �13,14�. Both Cell and
GPU devices achieve very high rates of floating-point arith-
metic operations relative to general purpose central process-
ing units �CPUs�. However, this performance is currently
limited to operations on single-precision �32-bit� data, with
double-precision operations performed many times more
slowly. Furthermore, for the case of the Cell processor, some
aspects of the IEEE 754 standard for binary floating-point
arithmetic �15� are not implemented, most significantly sig-
naled NaN �“not-a-number”� quantities, and a limited choice
of rounding modes are available. In addition, in order to
achieve high performance on these devices, it is currently
necessary to explicitly design �or refactor� code to accommo-
date the architectural complexity.

For the case of molecular dynamics, production codes for
biomolecular simulations already exist for the Cell processor
�CELLMD �16�� and for GPUs �17,18�. In the case of CELLMD,
a sustained performance of 30 gigaflops can be achieved by
using the Cell processor. Such a performance increase re-
quired a substantial change in algorithms, which had to be
adapted to the Cell hardware architecture. Techniques such
as multithreading, low-level memory management, and vec-
torized code are necessary to exploit the new design of this
innovative architecture. Nonetheless, we stress here that in-
crease in performance for MD simulations directly translates
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into new application possibilities. As an example, we have
performed the calculation of the potential of mean force for
ion permeation across a transmembrane pore using CELLMD

and a distributed infrastructure �PS3GRID.NET �19�� ca-
pable of hundreds of nanoseconds per day of computation
�20�.

The aim of this paper is to exploit the Cell processor for
the case of lattice-Boltzmann simulations. We show a lattice-
Boltzmann implementation on the Cell processor which cor-
rectly reproduces fluid dynamics theoretical results, even if
this architecture presents at the moment some numerical pre-
cision limitations such as single precision and reduced IEEE
compliance. The paper is structured as follows. In the next
section we provide details of the Cell broadband engine ar-
chitecture and the LB algorithm. Section III shows results for
our implementation of LB algorithm on the Cell processor.
Also, we report benchmarks on two different platforms that
feature the Cell processor, the Playstation3 �IBM QS20/
QS21 blade server�, showing a speed-up of 7 �21� times. In
the final section, we summarize our findings, estimate the
performance of coming second-generation products of these
new architectures, and discuss the scientific feedback that
such platforms are likely to bring.

II. SIMULATION METHODS

A. The Cell processor

The Cell broadband engine �CBE� �12� processor com-
prises one PowerPC processing element �PPE� which runs
the operating system and acts as a standard processor and
eight independent synergistic processing elements. Each of
the cores �PPE and SPEs� features a single-instruction
multiple-data �SIMD� vector unit for single-precision
floating-point operations. The PPE is not designed for high
performance, for instance it features only 512 kbytes of in-
ternal cache compared to the several megabytes of modern
processors. It is therefore crucial to use the SPEs on the
computing-intensive parts of the code. Most importantly,
each SPE does not access memory directly but only via asyn-
chronous direct memory accesses which copy data from the
main memory into a 256 kbyte local store memory. The local
store memory is accessed by the SPE with no intermediate
caching at very high speed �a latency of just a few clock
cycles�. This memory hierarchy is probably one of the key
points for obtaining very high sustained performance on the
Cell processor compared to standard processors. The Cell
processor can be programmed as a multicore chip using stan-
dard ANSI C and relying on the libraries from the IBM system
development kit �SDK� to handle communication, synchro-
nization, and SIMD computation. It is also important to
clarify that an existing application would run on the PPE
core of the Cell processor through simple recompilation, but
would not benefit from any SPE acceleration.

Currently, double precision is supported but with perfor-
mance penalties, while the next release of the Cell processor
�PowerXCell 8i �21�� supports double-precision calculations
at a rate approaching half that of the current Cell in single
precision. The Cell processor is available at present in the
IBM blades �QS20/QS21� with two Cell processors per blade

giving access to 16 SPEs transparently, and also in the Sony
Playstation3 �PS3�. The PlayStation3 can be regarded as a
commodity machine as it is easy to convert a PS3 into a Cell
workstation by installing GNU/Linux as the operating sys-
tem.

B. The lattice-Boltzmann method

The lattice-Boltzmann method is given by the set of equa-
tions �22�

f i�x + ci,t + 1� − f i�x,t� = −
1

�
�f i�x,t� − f i

eq�x,t�� , �1�

where f i�x , t� is the single-particle distribution function, in-
dicating the probability of the fluid to have velocity ci at site
x at time step t. The index i runs over a discrete set that
depends on the dimensionality and type of the chosen lattice,
in our case 2-dimensional, 9-velocity vectors �D2Q9�, i.e.,
i=1, . . . ,9. We choose a customary single relaxation time �
and the Bhatnagar-Gross-Krook form �23� for the collision
operator, the right-hand side of Eq. �1�.

In the limit of low Mach numbers, the LB equations cor-
respond to a solution of the Navier-Stokes equation for iso-
thermal, quasi-incompressible fluid flow. Its implementation
can efficiently exploit parallel computers, as the dynamics at
a point requires only information about quantities at nearest
neighbor lattice sites. The local equilibrium distribution f i

eq

plays a fundamental role in the dynamics of the system as
shown by Eq. �1�. The local equilibrium distribution f i

eq�x , t�
is derived by imposing certain restrictions on the micro-
scopic processes, such as explicit mass and total momentum
conservation

f i
eq = �i f�1 +

3

cs
2ci · u +

4.5

cs
4 �ci · u�2 −

1.5

cs
2 u2� , �2�

where u=u�x , t� is the macroscopic bulk velocity of the
fluid, defined as f�x , t�u��i f i�x , t�ci, �i are the coefficients
resulting from the velocity space discretization, and cs is the
speed of sound.

We consider here a set of LB method implementations.
�1� A standard C�� implementation �LBPC� of the LB

method in two dimensions. No particular optimization tech-
niques, such as unified streaming collision, have been em-
ployed in this code.

�2� A vectorized version of the code for the PPE single-
instruction multiple-data instructions which is referred to as
LBPPE. LBPPE uses the ALTIVEC vector instructions available
on the Power4 processor �the PPE in the Cell processor�. A
vectorial rearrangement of structure data plus some low-level
programming as required by the Cell architecture were nec-
essary for this, but no changes in the algorithm and comput-
ing techniques have been made.

�3� The Cell-fully-enabled version of the code, LBSPE,
which uses SIMD instructions on the SPE and a multi-
threaded parallelization. There is a very close correspon-
dence between ALTIVEC vector primitives and those for the
Cell SPE, making conversion of algorithms from PPE to SPE
relatively straightforward. Source code of the vectorial
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propagation and collision subroutines for both LBSPE and
LBPPE is available �30�.

For all codes we set lattice site �=1 and the integration
time step dt=1. All quantities in the rest of the paper are
calculated in lattice units.

III. RESULTS

The use of single precision for the lattice-Boltzmann
method is interesting because the LB method usually pre-
sents large memory footprints. Also, the simple update rules
in Eq. �1� can be easily vectorized using SIMD instructions
to update four sites at a time, providing a further computa-
tional advantage. We have checked different flows �boundary
conditions and channel topologies� and regimes �Reynolds
numbers Re�. The LB algorithm conserves mass and momen-
tum by construction, so we test how different platforms and
precisions can affect this physical property. In addition, Eq.
�1� is known to produce numerical instabilities and spurious
oscillations in low-viscosity regimes. Accordingly, we also
establish whether single-precision simulations deviate from
double-precision results at small fluid viscosities �higher Re�.
We simulate Poiseuille flow and the relaxation of a sinu-
soidal wave. Analytical solutions are known for these flows,
and we compare LBSPE and LBPC results to demonstrate the
ability of LBSPE to describe accurately the fluid dynamics of
the system. Our reference PC runs GNU/Linux 2.6.22 Fedora
Core 6 and is equipped with 2 gigabytes of random-access
memory �RAM� and Intel Core 2 clocked at 2.4 GHz with
4096 kbyte cache size.

A. LB method on Cell: Precision

1. Relaxation of random velocity field

We set up a simulation starting from a randomized veloc-
ity field. The initial values f i for each site are randomly
picked out of a distribution centered on the equilibrium val-
ues as in Eq. �2�, with m=1.0, ux=0.1, and uy =0.0 and with
a range of �10% from equilibrium values. We run this sys-
tem on a 128�128 lattice with periodic boundary condi-
tions. After fewer than 2000 time steps the fluid velocity field
relaxes to the constant values of ux=0.1, uy =0.0.

In Fig. 1 we plot the fraction of total fluid mass �Fig. 1�a��
and momentum �Fig. 1�b�� lost against simulation time. A
systematic deviation from mass-momentum conservation for
the vectorized and Cell-enabled versions �LBPPE and LBSPE�
of the original code is shown. When running the vector code
on the PPE, mass and momentum are not perfectly con-
served, with a very small, nearly undetectable increase dur-
ing the course of simulation. This is the consequence of us-
ing single precision, as we recover the same qualitative
behavior using LBPC compiled in single precision, even if
LBPC can nevertheless use the extended 80-bit precision of
the x86 floating-point unit �FPU�. This FPU capability makes
it possible for intermediate values in a calculation to be kept
at higher precision provided there are sufficient processor
registers free. On the SPE, such systematic deviation is more
pronounced, with a clearly detectable loss of mass or mo-
mentum. In addition, we note that the smaller the fluid vis-

cosity, the bigger is the loss. Mass and momentum conserva-
tion are exact when the same simulation of Fig. 1 is run with
our PC reference code LBPC in double precision over the
simulation window, independently from the fluid viscosity.
We explain the lower mass-momentum conservation of
LBSPE with the fact that the SPE FPUs of the current version
of the Cell processor support single precision �32-bit� arith-
metic and provide only a simple truncation �round-to-zero�
rounding mode. In fact, we recover the same behavior as that
of LBSPE when the simulation of Fig. 1 is repeated with LBPC
setting the rounding mode to round to zero �not shown�. As
LBPPE uses 32-bit precision, round-to-nearest mode, we con-
clude that the biasing introduced by rounding to zero domi-
nates the numerical error of LBSPE, obscuring any bias intro-
duced by the fixed 32-bit precision. The ALTIVEC instruction
set does not support the round-to-zero mode so a direct com-
parison between LBPPE and LBSPE is not possible.

We note that on the SPE the percentage of mass or mo-
mentum lost is very small �	10−4�. However, around 1% of
the total mass or momentum can be lost in a few hundred
thousands time steps, i.e., a typical production run. In the
following, we show that this does not affect the predicted
flow behavior of our test simulations, but we stress here the
importance of a consistency check with the simulation re-
sults of double-precision standard architectures before start-
ing production runs and scientific investigation exploiting
more general LB setups and methods of a LB code on the
Cell processor. Finally, the range of normalized single-
precision numbers for the SPE is extended beyond the IEEE
standard, but our results do not show any improvements due
to this feature, as in fact was not seen in the case of biomo-
lecular simulations �16�. The advent of the next generation
Cell processor �24�, capable of double-precision support, will
significantly reduce present drawbacks. Nevertheless, in
view of the results of LBSPE we argue that, for this applica-
tion, an appropriate choice of rounding mode is as important
as the use of double precision.
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FIG. 1. �Color online� LBSPE percentage of mass �a� and mo-
mentum �b� lost against time for a relaxing random velocity field
using different fluid viscosities �=0.018,0.071,0.167,0.5 on a
128�128 lattice. Small but systematic mass or momentum loss is
obtained using LBSPE. Mass or momentum loss increases as fluid
viscosity decreases. Continuous line with points shows a negligible
mass or momentum increase using LBPPE.
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2. Flow past cylinder

We run a simulation on a 128�64 lattice, placing a cir-
cular obstacle of radius 13, keeping ux=0.1 constant, on the
two first left lattice columns and randomly initializing the
other lattice sites as above, but within 2% randomization
from equilibrium values. We run 200 000-time-step simula-
tions with fluid viscosities �=0.018 and 0.5 on a PC �single
and double precision� and on the Cell processor. Standard
bounce-back conditions have been used near the solid
boundary. For such setup, we report exact conservation of
mass and momentum, and we explain this as a consequence
of fixing momentum at the boundary, which reduces the ac-
curacy necessary to integrate Eq. �1� correctly. Figure 2
shows the squared velocity field u�x�2 at t=200 000 obtained
for the two values of fluid viscosity. Figure 2�a� shows the
case of �=0.5, which corresponds to a Reynolds number
Re=uxLy /�=12.8. For such a low Re the flow is viscous, and
the figure correctly captures this characteristic. Figure 2�b�
shows the case of �=0.018 �Re=355.5�. For such a high
Reynolds number the flow presents a velocity field with vor-
tex formation. No difference between the velocity fields of
simulation runs on PC and Cell has been detected.

B. LB on Cell: Physical accuracy

1. Wave relaxation

The linearized solution for the velocity field for a small
initial perturbation u= (u0 sin�ky� ,0) is given by

ux�t� = u0 sin�ky�exp�− �k2t� . �3�

We set up a 64�64 simulation box with this sinusoidal ini-
tial velocity profile with u0=0.1 and k=2	 /Ly. In Fig. 2�c�,
we plot velocity field ux profiles at x=Ly /2 for two simula-
tions with �=0.018 and 0.5 at different simulation times. For
a more compelling inspection of the numerical accuracy of
LBSPE, we compare the effective �or numerical� shear viscos-
ity �eff obtained by fitting the simulation results with Eq. �3�

with the input value �input, plotting the percentage error
��input−�eff� /�input in Fig. 3�a�. The input kinematic viscosity
is calculated as �input= ��−0.5� /cs

2. Figure 3�a� shows that the
difference between input and effective viscosities is less than
0.02%. In addition �not shown�, the difference between ef-
fective viscosities calculated using LBSPE and LBPC �double
precision� is negligible.

2. Poiseuille flow

We set up boundary conditions for flow in a pipe �Poi-
seuille flow� on a 64�32 lattice and run simulations for
200 000 time steps with � ranging from 0.07 to 0.5. The
no-slip, steady state velocity profile for Poiseuille flow reads
�25�

ux = −
1

2


�p

�x
y�y − Ly� �4�

where �p /�x is the gradient pressure, 
=�� the dynamic
viscosity, Ly the channel width, and � the fluid viscosity. We
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FIG. 2. �Color online� u�x�2 at
t=200 000 of flow past a cylin-
der. The slower the velocity, the
darker the pixel. �a� The case of a
viscous fluid �Re=12.8�. �b� The
beginning of vortex production
�Re=355.5�. �c� The velocity field
profiles ux at Ly /2 for two simula-
tions of relaxing waves with �
=0.018 �dashed lines� and �=0.5
at different simulation times. �d�
The velocity profile ux against y
for a Poiseuille �=0.5 flow. Simu-
lation results on the Cell processor
and on a PC coincide. Also, the
profiles obtained agree with the
profile fit �dashed line� using Eq.
�4�.
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FIG. 3. �a� Percentage error ��input−�eff� /�input depending on
input fluid viscosity �input when simulating wave relaxation in a
64�64 box. Input and effective viscosities differ by less than
0.02%. �b� Percentage error ��input−�eff� /�input depending on input
fluid viscosity �input obtained by simulating Poiseuille flow on a
64�32 lattice. �eff agrees well with �input.
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plot in Fig. 2�d� the velocity profiles obtained by running the
�=0.5 simulation on LBSPE and LBPC �double precision�. We
note that results for the two different architectures coincide
and the prescribed parabolic behavior is recovered. We also
fit �dashed lines in Fig. 2�d�� the obtained velocity profiles to
Eq. �4� in order to recover the numerical viscosity. The ef-
fective viscosities obtained by fitting simulation results for
LBSPE and LBPC are equivalent. We compare the numerical
viscosity obtained by simulating Poiseuille flow with the in-
put viscosity in Fig. 3�b�, where we plot the percentage error
��input−�eff� /�input. �eff agrees well with �input, as the percent-
age error is within 3% for all values of viscosity tested.

C. Performance

We run simulations on the different flow topologies stud-
ied above to benchmark the performance of LBSPE, our
implementation of a single-phase lattice-Boltzmann scheme
on the Cell processor. The Cell processor currently features
on the Sony PlayStation3 and the QS20/QS21 IBM blade
server. The differences between the two architectures are
substantial, as IBM blade servers comprise two Cell proces-
sor chips. The eight SPEs of each single processor can be
used transparently by a program, allowing therefore 16 SPEs
to be used at the same time for computation. The PS3, in-
stead, currently by design grants access to only six of the
eight SPEs, one being reserved for running a virtualization
engine and the other one being disabled. These and other
hardware differences are reflected in a very different price,
making the IBM server the best �fastest� platform in terms of
raw performance �gigaflops�. However, when the perfor-
mance per dollar is compared, the PS3 results in the best
architecture �see below�.

A quantitative unit of reference for LB simulation perfor-
mance is the lattice site updates per second �LUPS�, which
measures the speed �as useful to the scientist end user� of a
code running on an architecture. We report in Table I the
number of LUPS obtained running 500 time steps of a 512
�256 flow-past-cylinder simulation on a PS3 and on an IBM
QS20/QS21 blade server and results obtained in Ref. �26�.
We report that LBSPE on a single SPE already runs consider-
ably faster than the equivalent code on our reference PC. In
fact, LBSPE using a single SPE runs at 	4.5 megaLUPS
�MLUPS� on the Cell processor, without differences between
PS3 and QS20/QS21 and 	73 MLUPS on a dual-Cell IBM
QS20/QS21 server, whereas a PC single-precision imple-
mentation reaches 	3.3 MLUPS on our reference PC. We
mention here that a LB code running at a few MLUPS can be
regarded as an efficient single-phase LB code �27�. In terms
of raw performance, LBSPE on the Cell processor delivers
sustained 28 gigaflops when run on eight SPEs. This estimate
is obtained by counting only the floating-point operations in

Eq. �1�, which correspond to 772 flops per lattice site. We
also recover here the same quantitative results when running
our code only on the PPE and comparing the performance
obtained with results obtained for one SPE. As already noted
�16�, the PPE runs decidedly more slowly �a factor of 	2
more slowly compared to our reference PC�, and this is due
to the fact that PPE architecture is not optimized for number
crunching, but rather for coordinating tasks and job schedul-
ing �28�. Finally, a double-precision LBSPE benchmark has
not been carried out as executing code in double precision in
the current Cell version is at least an order of magnitude
slower than single precision �28�.

Linear scaling is obtained when LBSPE is run on the PS3
and IBM QS20/QS21 blade server. This is due to the fact that
LBSPE is clearly computation bound. In fact, each SPE uses
one-tenth of the clock cycles fetching data compared to
crunching numbers, as can be determined by detailed code
profiling with IBM SDK tools. This permits us to obtain a
speed-up factor of 	7 for the PS3 and 	21 for QS20/QS21
compared to the original, PC version of the LB code com-
piled using Intel C compiler �ICC� 9.1, as ICC provides
some automatic vectorization and parallelization of the code.
Stuermer et al. �26�, starting from a heavily optimized LB
code, obtained more than 	10�107 LUPS on a single Cell
processor and up to 	20�107 on an IBM QS20/QS21 blade
server, showing that careful memory layout and deep algo-
rithmic optimization can add a further 3–4 times speed-up.

IV. CONCLUSIONS

In this paper, we have evaluated the use of the Sony-
Toshiba-IBM Cell processor for fluid dynamics simulations
using the lattice-Boltzmann method. We modified an already
existing LB code, creating a program capable of running on
the Cell processor. We simulated with LBSPE different flows
changing the topology, boundary conditions, and fluid vis-
cosity such as flow past a circular object, relaxation of a
transverse fluid velocity field, or a random velocity field and
Poiseuille flow. Our results show that the single-precision
and IEEE 754 rounding-mode limitations of the current Cell
release can in general affect mass and momentum conserva-
tion properties. However, we demonstrated the correct de-
scription of different fluid regimes equivalent to a standard
LB implementation covering a wide range of Reynolds num-
bers Re=6–350 and boundary conditions. We also per-
formed benchmark simulations with LBSPE on the two differ-
ent platforms featuring the Cell processor, i.e., the Sony
Playstation3 and the IBM QS20/QS21 blade server. The
benchmarks are calculated in lattice site updates per second,
therefore effectively estimating the potential scientific gain
that can be achieved from the Cell processor. The benchmark
results showed peak performances corresponding to that of

TABLE I. Mega lattice site updates per second �MLUPS�. PS3 can at most use six SPEs at the same time,
whereas the IBM QS20/QS21 can use 16 SPEs concurrently.

PC LBSPE 1 SPE LBSPE 6 SPEs �PS3� LBSPE 16 SPEs 6 SPEs Ref. �26� 16 SPEs Ref. �26�

MLUPS 3.3 4.5 26.4 72.6 95 200
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an efficient LB code running in parallel on a small cluster of
tens of PCs. Also, LBSPE on the Cell processor delivers a
sustained raw performance of 28 gigaflops when run on eight
SPEs. We also calculated the LUPS per dollar provided by
such platforms, with the 50 000 LUPS/dollar for the PS3
outperforming not only the 3500 LUPS/dollar of an IBM
QS20/QS21 server, but also a 17 000 LUPS/dollar estimate
of quadcore performance, assuming that a quadcore machine
costs $1000 and delivers four times the performance of a
single-core processor. We speculate that for the case of three-
dimensional lattices performance might be limited by the
RAM memory size, as the increased number of degrees of
freedom per site would reduce the total number of lattice
sites that can be stored in RAM. For the case of lattice-
Boltzmann simulation on a PS3 �256 megabytes RAM size�,
a 128�128�128 lattice would require the use of slow swap
memory. This is not a limitation for IBM QS20/QS21 serv-
ers, which feature 2 gigabytes of RAM.

In our view, although support for double precision is
highly desirable for scientific computation, of considerable
importance is a greater level of IEEE compliance even for
single-precision arithmetic. In any case, the Cell processor is
already playing a primary role in next-generation high-
performance computing, such as the first PetaFlops class su-
percomputer, the RoadRunner �29�, that features 12 960
PowerXCell 8i processors.
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